
Tutorials

Choose your approach: You can present the content linearly, or you can incorporate other text,
documentation, tutorials, videos, and projects to fit your needs. One option is to have learners
complete the tutorial independently, then choose items from the “Continue practicing” section to
complete together, allowing learners to work collaboratively and ask questions.

Develop in Swift Tutorials introduce app development with Swift and
Xcode for anyone learning how to develop for Apple platforms.

Educator Guide

A tutorial
• Coding a project, ranging from an app

prototype to a fully functioning app
• Building on prior knowledge, getting

progressively more challenging

A wrap-up
• Review of concepts
• Ideas for extending an app
• Suggestions for how to apply skills

in a different context, often by
creating a new project

In each chapter, learners will complete:

http://apple.co/distutorials

Chapter Description Topics and skills Estimated time

Explore
Xcode

Get to know Xcode and SwiftUI
by creating a prototype of a
messaging app. Learn about
syntax for Swift and how to use
the source editor and preview.

• Background
• Color
• Creating a new

project
• Dot notation

• Modifiers
• Padding
• String
• Swift syntax
• Text

• Views
• Xcode error

messages
• Xcode Library

1 hr

Views,
structures,
and
properties

Learn how to build a custom view
to create a multiday weather
forecast. In your view, you’ll use
properties to customize the
display for each day.

• Arguments and
parameters

• Bool
• Computed properties
• Custom subviews
• Font

• Foreground style
• Image
• Initializers
• Int
• HStack and VStack
• Returning a value

• SF Symbols
• Stored properties
• String interpolation
• Structures
• Subviews
• Type annotation

1.5 hrs

Layout
and style

Build two onboarding screens for
an iOS app to learn useful tools
for putting views where you want
them onscreen and inspecting
their size. Define new colors in
the asset catalog and use them
to create gradient backgrounds.

• Accent color
• Arrays
• Borders
• Brightness
• Color assets
• Customizing a

preview

• Font
• Frames
• Gradient
• Image
• Pinning a preview
• Shape
• Spacer

• TabView
• Transparency
• Type inference
• ZStack

1.5 hrs

Buttons
and state

Explore adding buttons to your
apps. Learn about Swift closures
and their relationship to buttons.
Use state properties to update
the user interface automatically.

• Animation
• Aspect ratio
• Assignment operator
• Button
• Button styles
• Closures
• Color

• Disabling controls
• Dynamic sizing
• Equality operator
• ForEach
• Hierarchical SF

Symbols
• Randomization

• Range operator
• Resizable images
• @State
• Trailing closure

syntax
• View tint

1.5 hrs

Lists and
text fields

Create a dynamic interface that
stores a set of items in an array
and displays them using lists.
Use text fields and bindings to
let people enter text.

• Arrays
• Adding and removing

from arrays
• Bindings
• Buttons with

custom labels

• Disabling
autocorrection

• Clip shapes
• ForEach
• List
• Not (!) operator

• Symbol rendering
modes

• Ternary conditional
operator

• TextField
• Toggle

1.5 hrs

SwiftUI foundations
Get familiar with the tools and technologies you’ll use to create apps.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-develop-in-swift-tutorials
https://developer.apple.com/tutorials/develop-in-swift/customize-views-with-properties
https://developer.apple.com/tutorials/develop-in-swift/design-an-interface
https://developer.apple.com/tutorials/develop-in-swift/update-the-ui-with-state
https://developer.apple.com/tutorials/develop-in-swift/create-dynamic-content

Chapter Description Topics and skills Estimated time

Custom types
and Swift
Testing

Define your first data
model by making your own
custom types, and prove
they work correctly with
unit tests. Then use your
custom types to keep
track of scores in a game.

• Creating a type to contain
your app’s logic

• Creating enum types
• Creating struct types
• Creating unit tests
• Fixing test failures

• Grid and GridRow
• Identifiable and UUID
• .opacity and
.disabled

• Running tests
• Swift file creation

1 hr

Models and
persistence

Build a list of your friends’
birthdays, using SwiftData
to save and retrieve that
data across launches.

• Calendar
• Classes
• Data models
• Date
• Date formatting

• DatePicker
• @Environment
• Frameworks
• @Model macro
• NavigationStack

• @Query macro
• Safe area
• SwiftData context

1.5 hrs

Navigation,
editing, and
relationships

Create an app to track
friends and their favorite
movies using SwiftData to
manage the model
objects. Use a query to
display the items in a list,
and make a detail view to
edit them. Then learn how
to create and display
relationships between
friends and movies, and
explore how to create
advanced queries.

• @Bindable
• ContentUnavailableView
• Creating sample data
• Custom view initializers
• Environment dismiss value
• Form
• Group
• Modal interfaces
• Multiple previews

• ModelConfiguration
ModelContainer

• Model relationships
• Navigation hierarchies
• NavigationLink
• NavigationSplitView
• Or (| |) operator
• Picker
• Predicate
• Property wrappers

• Refactoring
• Schema
• Search
• Section
• Sheets
• Sorting arrays
• Toolbars
• View tags

3.5 hrs

Observation
and shareable
data models

Power an alphabet game
using Observation. Share
a complex data model with
many independent views.

• Dictionary
• Documentation comments
• @Observable
• onChange

• Sharing your types
through the environment

• Task.sleep
• Xcode’s Quick Help

and jump bar
• zip

2 hrs

Data modeling
Model real-world concepts and relationships by creating and testing your own custom types.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-data-modeling
https://developer.apple.com/tutorials/develop-in-swift/save-data
https://developer.apple.com/tutorials/develop-in-swift/work-with-relationships
https://developer.apple.com/tutorials/develop-in-swift/complete-a-game-with-logic

Chapter Description Topics and skills Estimated time

Natural
language

Build a sentiment
analysis app and use
the Natural Language
framework to analyze
responses to an open-
ended survey prompt.

• @FocusState
wrapper

• Chart
• chartProxy
• Charts framework
• GeometryReader

• Insert versus append
• Natural Language framework
• NLTagger
• Plottable protocol

• ScrollView
• Sentiment analysis
• Textfield.axis

1 hr

Recognize
text in
images

Create an app that
uses the Vision
Framework and the
Translation API to
translate text on signs.

• Alert for app
processing time

• ImageResource
• Overlays

• RecognizedTextObservation
and RecognizeTextRequest

• Shape
• Translation framework

• .translationPresentation
• ViewModifier protocol
• Vision framework

1 hr

Model
training with
Create ML

Use Xcode’s Create
ML tool to train a
model to estimate the
anticipated difficulty
of a hike using
provided data.

• Create ML tool in
Xcode

• CSV files
• Machine learning

algorithms

• Model accuracy
• Previewing output

• Training, validation,
and testing data

• Xcode developer tools

1 hr

Custom
models with
Core ML

Integrate a custom
machine learning
model into an app that
predicts the difficulty
of an upcoming hike.

• Adding a Core ML
model to an app

• CaseIterable
protocol

• Core ML framework
• Generic views

• Segmented pickers
• View builders

1 hr

Machine learning
Use machine learning technologies to enhance your apps.

https://developer.apple.com/tutorials/develop-in-swift/analyze-sentiment-in-text
https://developer.apple.com/tutorials/develop-in-swift/extract-text-from-images
https://developer.apple.com/tutorials/develop-in-swift/train-a-core-ml-model
ttps://developer.apple.com/tutorials/develop-in-swift/import-models-with-core-ml

Chapter Description Topics and skills Estimated time

Windows in
visionOS

Create your first
visionOS app with a
window using SwiftUI.

• Circle
• ColorPicker
• Double
• Grid

• GridRow
• Padding for 3D views
• Remainder (%) operator
• Slider

• visionOS simulator
• Window resizability
• Windows

1 hr

Ornaments
and multiple
windows

Create multiple
windows in visionOS
using SwiftUI. Use
ornaments to provide
access to frequently
used controls without
crowding or obscuring
window contents.

• @Environment isEnabled
• @Environment
openWindow

• .glassBackgroundEffect
• @Previewable previews

• TextField word
wrapping

• visionOS .ornament

• WindowGroup,
.windowStyle, and
.windowResizability

1 hr

Volumes in
visionOS

View 3D content from
any angle in the
Shared Space using
Reality Composer Pro
and SwiftUI.

• Arrays
• DragGesture
• Environment openWindow

value
• Model3D

• NavigationSplitView
• Reality Composer Pro
• Rotation in three

dimensions

• Toolbars
• Volumes
• WindowGroup

1.5 hrs

Spatial computing
Design app experiences for spatial computing.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-spatial-computing
https://developer.apple.com/tutorials/develop-in-swift/present-common-controls-in-an-ornament
https://developer.apple.com/tutorials/develop-in-swift/create-3d-models-in-the-shared-space

	In each chapter, learners will complete:

